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For the periodic Fermi-Pasta-Ulam chain with quartic potential we prove the 
relation (p~)  r,~ ( 1 + ~)(o~q~) r, i.e., the proportionality, already at early 
times T, between averaged kinetic and harmonic energies of each mode. The 
factor ~ depends on the parameters of the model, but not on the mode and the 
number of degrees of freedom. It grows with the anharmonic strength from the 
value ~ = 0 of the harmonic limit (virial theorem) up to few units for the system 
much above the threshold. In the stochastic regime the time necessary to reduce 
the fluctuations in k to a fixed percentage remains at least one order of 
magnitude smaller than the time necessary to reach a similar level of equiparti- 
tion. The persistence of such a behavior even above the stochasticity threshold 
clarifies a number of previous numerical results on the relaxation to equilibrium: 
e.g., the existence of several time scales and the relevance of the harmonic 
frequency spectrum. The difficulties in the numerical simulation of the thermo- 
dynamic limit are also discussed. 

KEY WORDS: Virial theorem; approach to equilibrium; Fermi-Pasta-Ulam 
model; stochasticity threshold; rates of energy exchanges; thermodynamic limit. 

1. INTRODUCTION 

F r o m  the  very  b e g i n n i n g  o f  n u m e r i c a l  s imu la t ions ,  a n h a r m o n i c  cha ins  o f  

osc i l l a tors  have  b e e n  a m o n g  the  m o s t  wide ly  s tud ied  d y n a m i c a l  sys tems,  t 1, 2) 
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the purpose of recognizing the transition from quasi-integrability to 
stochasticity in a physically significant range of the parameters. In a sense, 
the behavior above the stochasticity threshold has been overlooked, since 
this regime of motion was supposed to match the standard expectations of 
classical statistical mechanics. 

To be definite, by stochasticity threshold we mean the transition 
between a low-anharmonicity regime, where the memory of the initial con- 
ditions influences the time averages forever, and a highly stochastic regime, 
where the equipartition theorem may be verified at any desired level of 
accuracy within a finite time. 

However, nonlinear chains, even when stochastic, are not purely 
random systems, e.g., in the sense of the Boltzmann gas of hard spheres, 
and their approach to equilibrium presents a wide variety of behaviors. 
As discussed in a recent paper, c3) in some cases the symmetries of the 
Hamiltonian may be relevant for this phenomenology, in particular for the 
numerical experiments on the thermodynamic limit. These experiments 
have shown that the simulation of the limit fails when symmetries are 
present, since they introduce an anomalous behavior for the dynamical 
quantities near the conserved ones, which have been called quasiconserved. 
In order to get the thermalization via numerical calculations, the infinite 
time of the ergodic averages must be simulated, as usual, by a finite time, 
long, but constant all through the experiments. Actually, at increasing N, 
for groups of quasiconserved variables made up by a fixed percentage of 
the total modes, the time taken to reach the same level of thermalization 
essentially grows with N. This makes impossible the simulation of the 
thermodynamic limit. 

We concentrate here on the one-dimensional Fermi-Pasta-Ulam 
(FPU) model (1'3) with quartic potential and periodic boundary condi- 
tions, as the best-known and most familiar model among those exhibiting 
the phenomenology described above. Furthermore, it presents another 
peculiarity which can be roughly described as the persistence, also above 
the stochasticity threshold, of a typical feature of the separable harmonic 
chains, as expressed by the virial theorem: precisely, the proportionality of 
the time-averaged kinetic and harmonic potential energies, for all modes 
and for early times. The proportionality factor does not depend on the 
mode and on the number of degrees of freedom, but it does depend on 
the parameters of the model: the specific energy and the relative strength 
of the harmonic and anharmonic potentials. It smoothly grows from the 
value 1 of the harmonic case (virial theorem) up to the few units of the 
whole model with the parameters three orders of magnitude above the 
stochasticity threshold. In this domain, the independence from the mode is 
obtained within a reasonable accuracy much before reaching a similar level 
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of equipartition, in times at least one order of magnitude smaller, inde- 
pendent of the parameters. 

In a sense, this marks an inversion of the usual attitude: phenomena 
which do not feel the threshold, indeed, are expected to be practically 
chaotic even at low energies; we show on the contrary that even at high 
energies there persists a harmonic-like behavior for such meaningful 
observables as the normal modes. 

We prove this property, a sort of virial theorem, in the appendix, since 
we prefer to present the results through a more phenomenological and 
intuitive approach, by introducing a specific ansatz of statistical nature, 
checked with numerical experiments. 

These results explain why harmonic quantities and parameters, such as 
energies and spectrum, keep a relevant meaning also when anharmonicity 
cannot be considered a small perturbation. In particular, they explain a 
well-known characteristic of the FPU model, i.e., the reliability of equi- 
partition of the harmonic energies as stochasticity criterion (which does not 
follow from the general equipartition theorem). 

With a similar approach, even if not supported by analogous rigorous 
proof, we also derive the equipartition of the rates of variation of the action 
variables and the equivalent proportionality to the harmonic spectrum of 
the rates of energy exchanges, t3'4J which therefore go to zero for the low- 
frequency modes. This last property, in turn, is related to the greater 
rigidity of these modes in the approach to equilibrium. 

Finally, we clarify the failure of the numerical simulation of the 
thermodynamic limit, specifying the role of various parameters in relation to 
the speed of thermalization of the modes. In this context, in order to check 
the reliability of the analysis, we introduce other (nonthermodynamic) 
limits, which allow us to get a prefixed value of suitable thermalization 
indicators within a finite time independent of  N. 

The paper is organized as follows: in Section 2 we recall generalities 
and main notations about nonlinear chains; in Section 3 we discuss the 
FPU model with some previous results, giving also the numerical specifica- 
tions for the experimental tests; in Section 4 we propose and check the 
proportionality between kinetic and harmonic energies as a phenomenol- 
ogical ansatz; in Section 5 we introduce a similar ansatz relating the rates 
of variation of the action variables and the harmonic potential energies; the 
results of Section 5 are exploited in Section 6 to discuss the limit N ~ or. 
Finally, in the" appendix we provide an analytic estimate of the property 
introduced as an ansatz in Section 4. 
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2. THE H A M I L T O N I A N  A N H A R M O N I C  CHAINS 

Let us start by recalling the main notations. The Lagrangian form of 
the harmonic term is 

1~. .2 X N 
&ao(X) = K -  XVz--~ ,.., x , - - ~  Z ( x i - x , + l )  2 (Xa=XN+t) (1) 

i = 1  i = 1  

Through standard diagonalization x = Bq, where B = [fli.k] is the unitary 
matrix 

(2 )1(  2 2 ( k - a ) i n  k = l  ..... M 
fli. k = Ck COS N ' 

f 2 ~  ~/2 2 ( N - k + l ) i n  k = M + l  ..... N 
fl,. k = \ ~ j  Ck sin N ' 

with M = [ N/2 ] + I, [ N/2 ] being the integer part of N/2, and 

C~= N 

~ .v/~, k = ~ - + l  (Neven) 

1, otherwise 

the harmonic potential reads 

X N ) 2 = 1 ~  2 2  
xV2=~ Z (xi-x,+, 2 k - ,  COkqk 

and the corresponding Hamiltonian is 

N N N 

H o ( p , q ) =  ~ 1 z z 2 i (pk  +ogkqk) = ~, Ek= ~, COkJk (2) 
k = l  k f f i l  k f f i l  

where E k are the harmonic energies and Jk are the action variables; the 
harmonic spectrum is 

Wk=2 V/~ sin ( k -  1)r~ 
N (3) 

Consider now the anharmonic Hamiltonian H =  Ho + V', with V' 
independent of the time t. The Hamiltonian equations, conserving the total 
energy E, read 

(lk(t) =pk(t) 
(4) 

pk( t) = -- (O2 qk( t) -- Fk( t) 
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where Fk denotes the anharmonic force on the k th  mode: 

OV' = _ ~ OV' 
Fk = -- Oqk fli, k OX i 

i = l  
(5) 

Consider also the following observables: 

and 

"~k = q k  = ( O ) k q k )  - -  ( q k F k ) ,  

gk = ( e D  

= < IJkl ) = < Igk I )/cok 

(6) 

(7) 

(8) 

where 

( f ( t ) ) =  lira (f(t))r=l'maoo ~ f ( t )dt  
T ~  oo 

denotes the time average. Since 

OH 1 ; r  1 r r 1 
"~klr-- (qk ~qk)r= ---~ J ~ qkt~kdt='~ J ~ Okpkdi---~[qkPk] r 

it follows that 

= ( C - O k q k ) T - - ( q k F k ) r - b O  =-~klr+ 0 (9) 

In the following, T always will be larger than the time necessary to make 
negligible the differences between ~ l r  and ~ In any case, ~ = -~k" The 
term --qk aH/Oqk is known as the virial of Clausius of the kth mode; for 
harmonic chains (F k = 0), formula (9) states one possible form of the virial 
theorem, i.e., the equality between time-averaged kinetic and potential 
energies for each mode. 

Observables (6), via the standard equipartition theorem, are equal to 
each other in the stochastic regime of motion; moreover, it is experimen- 
tally known that also the mean harmonic energies ~k tend to a common 
value in many Hamiltonian systems (this is indeed a widely used criterion 
of stochasticity). As to the ~ observables, there is a large pattern of 
behavior distinguishing different models. (3-5) In ref. 3 it was shown that the 
onset of the asymptotic behavior for ~ ,  -~k, gk, and ~ admits, at finite 

822/79/1-2-30 
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times, large deviations which increase at growing N, as will be discussed 
more extensively in Section 6. These deviations are related to the existence 
of quasi constants o f  motion. 

3. THE F E R M I - P A S T A - U L A M  SYSTEM 

The quartic FPU periodic system is characterized by the anharmonic 
potential 

N 

V ' = e V a ( x ) =  4 ~. ( x i - x , + l )  4 (x , -~x lv+l)  (10) 
i = 1  

Since V4 is translationally invariant, as the harmonic system is, the first 
mode decouples, implying the conservation of E~. The total momentum Pl 
is also conserved because col = 0. 

The anharmonic forces read 

N 

Fk= --~ E [(Xi--Xi+l)3"~-(Xi--Xi-1)3]~i, k 
i=l 

N 
=--80")k E (Xi--Xi+l)37i, k 

i = 1  

where the new matrix [Y;,k], defined as 

0, 

Y,.k = {(1/COk)(fli. k --fl,+ l.k), 

assumes the explicit form 

Y i, k = -~X C k 

. z c ( k - 1 ) ( 2 i + l )  
s i n  - -  - -  ~ - -  - - ,  

~ r ( N - k +  1)(2i+ 1) 
- -  C O S  ~ -  , 

k = l  

k=2,.. . ,  N 

The matrix [Yi.,] satisfies 

k = l  ..... M 

k = M + l  ..... N 

N N 

(Xi--Xi+l) = ~ 7i, jqj, X ~ (Xi--Xi+l)Ti, k=qk  
j = 2  i = 1  

where we used the variable qk, homogeneous to Pk, defined as 

(11) 

(12) 

(13) 

q k  = O ) k q k  (14) 



Fermi-Pasta-Ulam Chains 457 

The following orthogonality conditions hold: 

N ~Jik 7,.jTi, k = (j, k= 2,..., N) (15) 
i = l  

The numerical simulations quoted in the following have been per- 
formed on a VAX 4090 at low N and on a Connection Machine CM2 (both 
at the University of Parma) at high N. The equations of motion have been 
integrated through a standard fifth-order Runge-Kutta routine, using 
double precision (64 bits), mostly with a step At = 0.005. All this ensures a 
conservation of the energy within 1/105 in the worst case, which is much 
better than the one usually accepted in this field, but it is necessary for 
some specific calculations. The time averages pick up one value every 100 
steps, after a transient of 80,000 steps. Total times reach 10,000,000 steps. 
With X = 1, this corresponds approximately to 16,000 minimal harmonic 
periods (these are independent of N, whereas the longest periods diverge 
with N). 

Once the specific energy u = E/N is fixed, initial conditions are chosen 
randomly in the positions and velocities. Several choices in this class have 
been tested, with results qualitatively stable, as expected, apart from details 
for the lateral modes, i.e., for low frequencies. Of course, below threshold 
all the modes must be excited. 

The main results of ref. 3 can be illustrated with the help of Fig. 1. It 
shows the variables ~ [ r = ( P ~ ) r  for k=2,. . . ,512, Z = I ,  e=0.1,  and 
u =  10. These values ensure we are above the stochasticity threshold. The 
time T is clearly insufficient for a good equipartition, which would be 
reached at any desired level just waiting longer. As Fig. 1 suggests, the 
modes get equipartitioned at different speeds: faster for the central modes 
and slower for the lateral ones. Moreover, whereas the speed of thermaliza- 
tion of the central modes remains constant, the speed of the lateral modes 
becomes slower and slower as N increases. This means that the "computa- 
tional" thermodynamic limit N ~  oo cannot be performed, as usual, at 
fixed time T, no matter how large it will be chosen. 

This can be understood by observing that in (11) the factorization of 
the harmonic frequency co k is not a trivial one [see (12)]. Consequently, 
the anharmonic force has in front a factor s i n [ ( k - 1 ) n / N ] ,  which is ,~1 
for the lateral modes, i.e., for k near 2 or near N, while it is O(1) for the 
central modes. Provided that the dependence on k of the other factor in 
(11) does not haodify significantly such behavior, this identifies the lateral 
modes as quasiconserved quantities. From here, the greater rigidity of the 
lateral modes follows. In ref. 3 we stressed the "sinus-like" shape of ( IEkl ), 
which are the variables connected to the activity of the modes (see Fig. 4 
below). 
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Fig. l. Time-averaged kinetic energy ( p 2 ) r .  Parameters: N = 5 1 2 ,  Z = I ,  e=O.1, u = 1 0 .  
Time step z/t=0.005, total time T =400 ,000 .d t ,  sample of 4000 averaged instantaneous 
values. 

Independently, the approach leading to formula (11) has been 
suggested in ref. 6 for the FPU model using an equivalent transformation. 
Moreover, Ruffo (7) noticed that ( 11 ) (or equivalent formulas) qualitatively 
explains our previous phenomenology for all the models studied in ref. 3. 

A more complete treatement of this point will be developed in the 
Sections 5 and 6. 

4. THE VIRIAL OF CLAUSlUS IN THE FPU CHAIN 

We discuss now another interesting peculiarity of the FPU model, 
found in that context but not previously discussed: at a value T longer than 
the time necessary to make ~ l r = . ~ k l r  as suggested in (9), ~klr is also 
indistinguishable, if properly scaled, from Cklr. They result to be propor- 
tional to each other, and clearly both to ((t2)r, much before reaching 
a similar level of equipartition. This fact is illustrated in Fig. 2, which 
represents the ratio ~a~klT/(q~)r, i.e., the same variable of Fig. 1, normal- 
ized at (~7~)r" Note that the scales of the two figures are proportional to 
their mean values, so that the comparison between them gives a proper 
feeling for proportionality versus equipartition. This phenomenon has 
nothing to do with the stochasticity of the motion (apart from exceptional 
initial conditions below threshold); in fact, it takes place also for low values 
of u, or equivalently for low values of e down to the harmonic value e = 0. 
By varying the parameters, the proportionality factor smoothly grows from 
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MODES 

Fig. 2. Ratio between time-averaged kinetic and potential harmonic energies (p2)r/(~l 2) r. 
Same parameters as in Fig. 1. 

the value 1 required by the virial theorem for e = 0  [see (9)], up to the 
value readable in Fig. 2. [As for' the time, see after (21)]. 

The proportionality we are speaking about will be proven in the 
appendix, giving rise to a sort of virial theorem specific for this model. 
However, for a better understanding, we present an argument which is very 
useful for the intuitive treatment of the virial terms, particularly with 
regard to the role of the parameters. 

We.begin by studying the anharmonic virial: 

- - < q k F k > r  = ~  ( X i - - X i + , )  3 Yi, kqk (16) 
i 1 T 

which, via formula (9), connects ~k l r  and <~2> It. Formu}a (9) and the 
comparison between Figs. 1 and 2 lead to the ansatz 

- <qkFk> T "~ ~T< q2> T (17) 

with 0CT~ 1.25 independent of k. The value OCT+ I can be read directly in 
Fig. 2. The convergence to the time-independent value ~ ~ 1.22 is very fast. 

To figure out the dependence of ~ r  on the parameters, consider the 
identity 

N 

--<qkFk>T =~ Y~ ri, k((Xi--Xi+,)2(Xi--Xi+l)(tk>T 
i = l  

N 

= e  ~" ?i, k r l i k r ( ( X i - - X i + l ) 2 ) r ( ( X i - - X i + l ) # k ) r .  (18) 
i = 1  
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which simply represents the definition of the correlation rhkr among the 
two terms in the time average, i.e., (xg-xi+~) 2 and (X~--Xi+~)?lk. 

Because of the i ~ i + 1 shift invariance of the Hamiltonian and the 
chaoticity of the x~ variables (in practice, also below threshold), the time 
averages are expected to converge very rapidly to a value independent of 
the index i, leading to 

/2v2\ 
<(x,-x ,+, ) - )  T~ \--N-/T 

(This can be easily tested.) Therefore this factor can be extracted out of the  
sum (18): 

2V, 
- - (qkFk)r~e(--~)  ~'i.~likT((Xi--Xi+,)qk)T 

T i  1 

(19) 

From (19), taking into account (13), a possible realization of the ansatz 
(17) is given by rhkr~A independent of i, k, and T. Therefore 

 T:eA/2v \, (2o) 
\ N / T  

Actually, the weak dependence of q~kr on i, k, and T is quite reasonable: 
on i, once again, because of the shift invariance and the chaoticity of the 
( x ; - X ; + l )  2 terms; on k since there exists only the relation (13) between the 
N variables (xi-xi+]) and the single kth mode; on T because of the fast 
stabilization of the time averages of the powers of (xt-x~+]). Therefore, 
the quantity A substantially describes the correlation due to the factoriza- 
tion of ( x ; - x ; +  ~)3 Since in this factorization the other parameters are not 
involved, A is assumed independent of them. [The analytical derivation of 
(20) in the appendix includes the quantitative estimate of A.] 

The experiments at high N, as in Figs. 1 and 2, are particularly signifi- 
cant because of the relevant phenomena of deviations from equipartition 
recalled in Section 3. Actually, we performed also economical experiments 
at low N, notably N =  33, stressing the fact that formula (20) does not 
require necessarily high N. 

At N = 3 3 ,  u=10 ,  e=0.1,  and Z = I ,  from (17) we obtain, for 0c r at 
several times, the following computational results: 

~r, ~ 1.30 + 5 % ,  ~r2 ~ 1.24 + 4 %  

~r3 ~ 1.23 + 3%, ~ r , ~  1.22+ 1% 
(21) 



Fermi-Pasta-Ulam Chains 461 

The times T]-T4 correspond to 100,000, 400,000, 1,200,000, and 4,000,000 
steps, and the deviations are far below the corresponding deviations in k of 
~klr.  For example, at the times T~ and T3, the equipartition of the latter 
variables is very poor, especially for the low-frequency modes: oOklr still 
varies over two orders of magnitude at T], and by 50% at T3. From (21), 
(20), and the independent evaluation of the early stabilized (V2/N> r, the 
estimate 

A ~ 2.4 (22) 

can be deduced. Analogous experiments at very low energy, e.g., u = 0.001, 
give A ~ 2.9 as a good approximation. Both values are independent of u in 
the two domains, and the correlation A undergoes a transition through the 
stochasticity threshold (see the appendix for an explanation of this fact), 
more precisely, between u = I and u = 5, when • = 1 and e = 0.1. 

The fast convergence in T of 0t r and of (V2/N)7- justifies in the 
following the omission of the subscript T for these quantities, much before 
the onset of a good equipartition. The physically significant estimates for 
the kinetic terms and for the harmonic energies now read 

( p 2 > r ~  (1 + ~ ) ( ~ 2 5 r ,  (Ek>r~ �89  (23) 

As a final step, by considering the whole Hamiltonian we derive the 
complete dependence of ct on the parameters, through the evaluation of 
the factor (V2 /N)  contained in (20). In analogy with the treatment of the 
quadratic term ( ( x i - x i+~)2>r  in (18), the estimate for the time average 
of the anharmonic potential gives 

N 4 A 1)2> ( V 4 ) T = I ( i ~ I ( X i _ _ X i + I ) ) T ~ _  ~ 2 V  2 N 

= A N  ( / V2X~'~ 2 
\ \ N / J  

(24) 

Collecting (23) and (24), we find that the time average of the specific 
energy reads 

) U=-- - - = -  E k q-e( 
N N k I 
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By using the explicit form of 0t and by introducing the unknown 

we find for Eq. (25) 

3 g A y  2 + 2 y  - u / x  = 0 ~ y - 
( 1 + 3 A ~ u / x )  1/2 - -  1 

3~A 
(26) 

Inserting the values X = 1, e = 0.1, u = 10, and the estimate A = 2.4, we 
obtain 

y = 2.59 (27) 

which is within 2 % of the experimental value at 7"4. 
At greater N, for example, N =  512, all the numerical data given above 

are confirmed, so that we assume the explicit form 

= ] [ (1 + 3aeu/z)  ' / ~  - 1 ] (28) 

above and below threshold, with the two different values for the correlation 
A mentioned before. 

Formulas (17) and (28) have been successfully checked in the following 
ranges: 32 ~<N~< 2048, 0~<e~<0.2, 0.001 ~<u~< 100, and X= 1, 2, taking into 
account the transition of A through the threshold. 

5. THE RATES OF VARIATION OF ENERGIES 
AND ACTION VARIABLES 

Because of the physical meaning of the variables, in this section we 
restrict our analysis above threshold. 

The same kind of proportionality between ~ k l r  and ( ~ 2 ) v  illustrated 
in Fig. 2 also has been found between ~ k l r  and ( ~ 2 ) r ,  even if not as 
sharp as the previous one. Therefore, in the same spirit of ansatz (17), we 
could write 

assuming this relation as an independent ansatz. We do not have a 
rigorous deduction of this, as done in the appendix for (17). However, it 
is possible to connect ~ with the parameters, as for 0~ in Section 4, in order 
to obtain a form accessible to experimental checks. 
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1(-2.. I - Since E k = ~ P k  02), by using the Hamilton equations, we have that 

and 

EE =pkFk, Jk = P__L Fk 
CO k 

= < IJkl> = < IEk I >/COk = < I(Pk#Ok)tkl> 

In analogy with (19), substituting there qk with Pk, we obtain 

( pkFktok /rX ~ A '  ( ~ ) ( [ P k q k [ )  r =  2--~, R~ ( d q k ) r  (29) 

with R=A'/A. This estimate is well satisfied with A ' ~  3, even if not as 
precisely as (28). 

As for the right-hand side of (29), by definition, 

We divide the integration interval 0-T in correspondence with the zeros t k 
k k the modulus can be of the function qk~k" In each subinterval ti-ti+ i 

eliminated by simply extracting a sign: then the integral of the derivative is 
the difference of ~2 at the ends of the subinterval, where either qk or ~k 
vanishes. Clearly, only the points where ~k vanishes give a nonzero con- 
tribution. On the other hand, between two zeros of a sufficiently regular 
function, there are 2 m i -  1 zeros of the derivative, i.e., m~ relative maxima 
interlaced with rn~-1 relative minima where the function is positive. The 
maxima and the minima contribute, and each one twice, with a plus and 
a minus sign, respectively. Therefore 

I t -:- dt=2 [qk(ti. k _q~(ti. k + q~(ti. k (31) 
i = l  1 

where  t k t/k.3 . . . .  are the points of relative maximum and t k t~4 .... are 
i ,  1 '  , i ,  2 '  , 

the interlaced points of relative minimum of ~k(t). Of course, where the 
function is neg~ttive, maxima-minima and plus-minus signs have to be 
interchanged. 

To proceed further, we introduce some simplifying hypotheses on the 
time evolution of orbits which will be discussed later. If the motion of the 
modes, even in the stochastic region, is "sinus-like," i.e., sufficiently regular 
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to allow only one maximum (or one minimum) between two zeros, then in 
(31) the internal sum would reduce to one single term, leading to 

fop d~2 "~ qk(t~) (32) ~qk dt=2 ~, -2 rk 
i = l  

with (T k) being the points of relatie maximum (or minimum) in each half- 
period. If further the motion is even more regular, oscillating with fixed 
frequency (and possibly modulated amplitude), then the time interval 

k k z ~ k  zlt,. = t~+ t - t k is a independent of i. Therefore, the sum (32) multiplied 
by the time interval A k represents the integral of ~( t ) ,  apart from an over- 
estimate due to the evaluation of ~ ( t )  only in the maxima. With an exactly 
sinusoidal behavior of ~k(t) in each half-period such an overestimate is 
given by a factor 2, independent of the modulation in amplitude. 

Under all these hypotheses on the motion, collecting (30) and (32), we 
obtain 

( d 0 2 ) r  = 1 ~ 2 /, ~ 4  2 -~LI  t)k(r,') (#~> r (33) 

where A k is the assumed half-period of the mode k. 
To check the assumptions above, we have explicitly explored the 

functions qk(t), observing that, differently than in the x,. picture, the 
stochastic regime of motion does not destroy a certain kind of regularity, 
in the following sense: 

g 
% 
~ 

5 

o~ o 0o o o o �9 o ~ o ~  

0 o ~ ~ o o o ~ o o o 

; ~ o ~ 

~ 1 7 6  

I 
- l O ~  

5 0 0  6 0 0  7 0 0  8 0 0  9 0 0  1 0 0 0  

TIME 

Fig. 3. Time behaviors of qk(t) (continuous line) and pk(t) (diamonds) for k = 100. Window 
of 10,000. ,Jt after a long transient, steps of 20. At. Same parameters as in Fig. 1. 
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�9 There is an oscillating behavior with almost equally spaced zeros for 
qk(t) and interlaced zeros for qk(t); this means that, even if the amplitudes 
are varying in time, it is possible to define an "effective period" 2A k (or an 
"effective frequency" chk) (Fig. 3). 

�9 Moreover, the ratio between the harmonic and the effective frequen- 
cies is independent of k within a few percent; it can be evaluated through 
direct inspection on plots as in Fig. 3 or, better, by numerical experiments 
on (33). This formula is very well satisfied and gives the proportionality 
factor between 05 k and o9 k independent of k within a few percent. 

Therefore, the actual motion of normal modes in the anharmonic FPU 
system can be compared to the motion of "effective" harmonic oscillators 
with rescaled frequencies o5 k and modulated amplitudes, i.e., exactly the 
kind of motion considered for deriving formulas (32)-(33). As noticed 
before, these observations do not regard time averages, and they just 
require a reasonable transient time. 

This phenomenology (partially known for a long time) is connected to 
the persistence of harmonic features in stochastic anharmonic systems. 
Precisely, consider again the anharmonic oscillators 

N 
;Tk = --09~qk--eCOk ~ (x i - x ,+ l )  3 ?i.k 

i = l  

Inspired by the previous successful ansatz, in the cubic terms we extract the 
)2 factors (x i -x i+] as a noise (uniform in i) acting on linear forces, i.e., 

N 
~k~ --co~qk--eCOkOtX ~ (Xi--Xi§ = --0,)2(1 +o~)qk 

i=l 
(34) 

Of course, this procedure is meaningless for instantaneous observations, 
but Eq. (34) is consistent with the behaviors described above (Fig. 3), 
apart from the modulation in amplitude, which may be attributed to the 
time dependence of the extracted factor. Actually, we use the same symbol 

in (34) and in (20) for simplicity, because they turn out to be numerically 
identical [see below after (35)]. Equation (34) represents the motion of 
"effective" oscillators with frequencies o5 k and related half-periods Ak: 

(.Ok=(.Ok(1 -k-0~) 1/2, .4 k - ' ~ k  ~ (35) 
2 c3 k 
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The measure of A k through (33), assuming the rescaling factor (1 +0c) ]/2, 
gives for 0~ the same numerical value as in (20). By collecting (29), (33), 
and (35), we finally obtain 

~ [ r  ~ Ra 2(1 + ~)]/2 (q~)  r ~ 1 . 4 ( ~ )  r (36) 

which is close to the experimental result within a few percent. 
Formula (36) can also explain the typical pattern of Fig. 1, i.e., the 

differences between central and lateral modes. Indeed, (36) multiplied by 
Oh gives the rates of energy exchange 

(IE~ l) r~a~k R~ 2(1 + ~)1/2 (qk )  r (37) 
7t 

which measure the activities of the modes (roughly connected to the speed 
of thermalization). 

The plot of these observables is reported in Fig. 4, which reproduces 
Fig. 9 of ref. 3 at earlier T and N = 5 1 2  instead of 1024. It is noteworthy 
that possible large oscillations of (~2)  r are smoothed out by the vanishing 
of co k for k near 2 or N. The consequent vanishing of ( IEk l )  r implies that 
the lateral modes have a much slower activity than the central ones, and 
that the connected observables have much slower variations. In other 
terms, whereas the initial data have no influence on the global pattern of 

15 

0 ~ 
0 1 O0 2 0 0  300  400  500  

MODES 

Fig. 4. Time-averaged absolute rates of energy exchange <l~'kl>r. Same parameters as 
in Fig. 1. 
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Fig. 1, they do influence for a very long time the values of the single lateral 
modes. Formula (37) therefore explains the results presented in ref. 3 at 
fixed N. 

To suinmarize the results of Sections 4 and 5, all our estimates (23), 
(24), (28), and (36) are essentially based on the ansatz (20) and its analogs 
(29) and (34). They depend on the constants A and A', testable experimen- 
tally once forever, above and below threshold as far as A is concerned, only 
above, as far as A' is concerned. 

6. L A R G E - N  B E H A V I O R  

The large-N behavior above threshold may be explored, either by 
keeping constant the parameters e, X, and u (i.e., in the thermodynamic 
limit) or by varying them with the purpose of controlling the relaxation 
times in the approaches to equilibrium. 

As already observed in the introduction, the thermodynamic limit 
regards the limit N ~  oo of time-averaged quantities over infinite time. 
From an experimental point of view, numerical tests require that we 
operate at growing N and "large" times: large, in the stochastic region, 
means at least the time T necessary to reach a pre-fixed sufficiently small 
level of equipartition. Such a time should be independent of N, in order 
to simulate the infinite-time average. We have shown in ref. 3 that this 
time T, on the contrary, increases with N, so that the experimental ther- 
modynamic limit is not well defined. More precisely, along the indications 
of Fig. 1, we choose a fixed percent of central and lateral modes (e.g., 70 % 
and 30%, respectively), observing at growing N the times necessary to 
reach a certain level of equipartition, defined by a given value of the 
variance of the observables (6) and (7). These times are roughly constant 
for the central modes, and grow with N for the lateral ones. 

This can be better understood now within our estimates (37) for the 
time-averaged modulus of rates of energy exchange. In the thermodynamic 
limit, as follows from (28), 0~ remains constant, as much as the average 
value of (@~)r, i.e., 2y [see (26)]. In other terms, Fig. 4 remains always 
similar to itself, i.e., ( [ E k l ) r ~ c o k :  the modes thicken in the whole 
spectrum, therefore around finite values (with a constant maximum) for 
high frequencies, around zero for low frequencies. In this limit, lateral 
modes have a slower and slower activity, explaining the experimental 
results quoted ~[bove. 

As suggested by Fig. 4, fluctuations of (@2)r  occur in the whole 
spectrum, but they are irrelevant around the central modes (because the 
mean value is high) and have consequences only for details around low 
frequencies. 
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Instead of rates of energy exchange, one could equivalently consider 
the harmonicity-breaking force (clearly, time-averaged in modulus). 
Proceeding as in (29), we obtain the relation 

(IFk I > r ~  R~ok( I~kl >T 

which has been successfully checked. 
Furthermore, we studied other (nonthermodynamic) limits, in order to 

explore the possibility of keeping the thermalization time bounded in the 
whole spectrum at growing N. On the basis of Eq. (37), this can be 
achieved by imposing, for example, that the number of "quasiharmonic 
modes" does not increase with N, or requiring that ( I /~k l ) r  does not 
vanish in the limit. We can keep the specific volume y = (V2/N)  r ~  const, 
with the following conditions: 

u ~ N  c, e ~ N  c, x ~ N  ~ (38) 

Among these conditions, it is possible to choose c in such a way that the 
rates of energy exchange remain not decreasing. In a number of successful 
numerical experiments (also supporting the reliability of the ansatz) we 
chose c = 1, i.e., u ~ N, etc., which corresponds to keeping (I/~kl> r oc v/N 
for the lateral modes. With the limit (38), we found as expected a f'mite 
upper value for the equipartition time, given by the slower modes. As for 
the central modes, since ( I E k l ) r  oc Nx,/-N , their thermalization is even 
faster than in the usual thermodynamic limit. 

APPENDIX.  THE ESTIMATES 

To derive analytically the ansatz (20), including the value of the 
parameter A, consider the identity 

N 
3 ~ - -qkFk=e ~ (Xi--Xi+l) 7i. kqk 

i=l  
N 

=e ~ {y,4kr + 3[(X,--X,+I)--Y,.kCk]2 7,.kqk2 -2 
i = 1  

~ 3 + 3 [ ( x i -  Xi+ 1) - -  ri. k q k ]  ~)i, kq3k 
- 3 -I- [ ( X i - - X i + l ) - - y i ,  k q k ]  ~ i ,k#k}  ( A 1 )  

and some properties of the gamma matrices: 

N 3 1 N 2 2 1 
2 4 ?i.k--2 Nz: '  ~ ?i.jYi. k = l ~ :  

i f f i l  i = 1  

N 1 N , 3 1 (A2) 
~. 2 A(jlk), ~, ~ . j~ , ,k=Nx2zl ( jk  ) ~i.j~, lYi. k - 2Nx2 

i = 1  i = l  
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Different indices, i.e., {j,/ ,  k}, do not assume simultaneously the same 
values, and the functions A are simple combinations of few ordinary 
Kronecker ft. The properties (A2) derive from trivial trigonometric 
properties. 

The term' in ~ in (A1) is easily evaluated through (A2): 

( f ) '  4 - 4  

Y~,kqk NX2 i I r = - ( ~ t 4 ) r  (A3) 

which vanishes for growing N. As for the term in ~2, from (13) and (A2), 

~ 2 2 - 2  {[(Xi--Xi+l)--Ti, kqk] 7i, kqk 
i l T 

+ 2  ~ - ~  2 
.= i 1 k) I= 2(jk) T 

1 ( ~  ) ~ 1  
-2-2 (2V2) ( t ~ )  r (A4) ~ - -  q)qk r~-~2 r NX2 j k) 

The symbol Z~c=2(k) means the "incomplete" sum where the index j 
excludes the value k. Here all the contribution comes from the term with 

- 2  - 2  (qj qk)r, by substituting the whole sum for the incomplete one, and from 
the natural hypothesis that V 2 and ~2 are weakly correlated at large N, so 
that the time averages can be factorized. The second term is much smaller 
because of the cancellations in the time averages (OjOlO 2) r with different 
{j, l, k}. In fact, the Oj. are weakly coupled to each other and they have 
zero time average. Actually, there are two sums over j and/ ,  but only one 
survives because of the A(jlk) introduced in (A2). 

Similar arguments lead to the conclusion that also the term in 0f in 
(A1) is negligible with respect to the previous one. 

As for the last term, 

= i~ l  ~i, jOj- -~i ,  kOk j~2~i ,  jOj ~i, kOk T 

" ) (A5) 
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these last symbols being introduced for convenience. Indeed, the following 
slightly modified combination of Xk and Yk holds: 

N N ~2 N 

N 2 

"~ i~=l j~=2 Yi, jqj-- Yi, kOk Yi. jqj r (A6) 

Formulas (A5) and (A6) require different estimates above and below 
threshold. In the stochastic domain, at large N, the last two terms in (A6) 
are approximately equal to each other and (apart from the factor e/4) to 
the anharmonic potential (10). In fact, they differ not for classes of 
contributions (e.g., all the squared terms, all the forth powers,...), but only 
for terms containing powers of the single qk, which are a small fraction of 
the total. Therefore, we may conclude that 

2Xk -- Yk ~ 0 

and the approximation improves growing with N. From this, (A5), and 
(A4), we finally obtain 

(f ) { [ ( x i -  xi+ ,) - ~ i . ~ k ]  3 ~' ,.~0~} 
i 1 T 

1 
~ --gYk 

= --~ {[(X,- -X,+l)- -?i .  kClk]2?,.kqk} 
\ i = 1  T 

z -N-r 

By collecting (A1), (A4), and (A7), we obtain the ansatz (20) with the 
value A -- 2.5, to be compared with the experimental value A ~ 2.4 given in 
(22). Also the partial estimates (A4) and (A7) have been numerically 
checked to be satisfied within the same few percent of confidence. 

An analogous procedure gives the estimate (24) on the anharmonic 
potential V4. 
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Below threshold, from (A5) it follows that Xk~ Yk: in fact, the only 
contributions come from products of ~j and qk with j ~ k, which, in this 
domain, are nearly completely uncorrelated. On the contrary, the last two 
terms in (A6) cannot be considered equal to each other as before, since 
they depend on k via the initial conditions. Therefore, below threshold 
(A4) gives the whole estimate of ~ in (20), with A --3, to be compared with 
the experimental value A ,~ 2.9 given after (22). 
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